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Abstract:

A simple model of the contact between two surfaces is

given, taking into account the statistical features of this

contact. A theory of interfacial thermal (or electrical)

conductivity is based on this model. The information that

enters our theory is the height distribution of the asperities

on the surfaces. For some simple distributions the heat

flow is calculated as a function of the applied pressure,

taking into account elastic as well as inelastic deformations

of the surfaces.

For more realistic height distributions the required

integrals can easily be evaluated numerically.

\
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1. Introduction

One of the most complicated tasks in any calculation of

the interfacial thermal c _nductivity (ITC) is the description

of a rough surface. Va_:'iousstatistical _1-3_ and semi-

empirical E4_ approaches have been proposed to describe the

properties of a surface and the contact between two such

surfaces.

In this paper we shall investigate a special model of a

surface. This model can best be applied to milled surfaces,

since their characteristics resemble most closely the assumptions

made here. This restriction to a special class of surfaces

enables us to find rather explicit expressions for the heat

flow, surface area in contact, etc. Furthermore, inelastic

and elastic contacts can be taken into account simultaneously.

Various other generalizations of the model, i.e. inclusion

of void phase conduction, effects of surface films, etc. are

discussed in Chapter 9 and will be studied further in parts

II and III of this paper.

Here we shall restrict ourselves first to the simplest

possible statistical theory of the contact between two surfaces,

in order to present the essential features of the theory

clearly.

2. The Model

The surface of the metal will be represented by a series

of equidistant spherical asperities of varying height, but
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equal curvature. Fig. i shows a cross section through our

surface model.

Fig. 1

Each spherical asperity is thus contained in a square

of area B2. The distribution of the heights of the hills

will be described in a statistical sense by a function 0(h)

such that 0(h)dh = probability that an asperity has a (1)

height between h and h + dh.

p has to be normalized such that

/_ (h)_h = 1 (2)

We shall always assume that there is an upper limit to the

height of the hills, i.e. p (h) = o h > H.

If we place two such surfaces above one another as shown

in Fig. 2, they will begin to touch as soon as their distance

of approach L reaches 2H.

)
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However, only very few contact points will touch in this

case. With rising pressure L decreases and the number of

contact points increases accordingly. At the same time the

contact points will be deformed elastically or inelastica]ly

and ITC sets in.

r

An essential drawback of our model is, of course, that

we assume the asperities to be distributed regularly.

Furthermore, we assume that the hills on the two surfaces

oppose one another exactly and no contacts such as the one

in Fig. 3 are considered.

Fig. 3

This limits the applicability of our theory essentially

to the contact of two milled surfaces. However, many of the

results presented here are probably true also for other types

of surface finish.

In the sequel we shall call opposing squares (containing

one asperity each) a contact square, irrespective of the fact

whether the two spheres actually touch or not.

3. Review of the Results for a Single Contact Point

The elastical deformation of two spheres that touch one

another has been calculated by H. Hertz E5D • The basic
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results tgeneralizations of which have been given in _6] ia_

the following). See Fig. 4.

T \,; /[
\ ..... . /

1 ,
If the two spheres are pressed together with a total force F

they will be deformed elastic___, uch that their apparent

penetration depth _ is given by

m/.7
,_= (2r2 O2 ,i _) (3)

where

1 - o2
D =_ _ (4)

(we assume that both spheres consist of the same material).

The radius of the contact circle is given by
i

1/3

a = (--.,_--) (_)
t

The standard treatment of the heat flow through such a contact !

point is due to Cetlnkale (Vezlroglu) _7_ • i

I
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The contact is replaced by an idealized contact element

as shown in Fig. 5.

t

I
I

I

I
I

....,, 1.

|
!
I

Fig. 5

The solution of the boundary value problem for tne heat

flow is rather complicated, due to the presence of liquid

(lubricant) or gas in the gap between the two surfaces.

Since we are interested here mainly in the statistical

features of the theory we shall consider the simplest case

first, i.e. contact in vacuum. In this case the heat flow h

becomes

h c = 2 a k A T (6)

where A T is the temperature step as the interface and k is

the thermal conductivity of the material. It is perhaps

somewhat surprising that the heat flow is proportional to a

rather than a2 and independent of the height of the contact m

element (Equatlcn (6)) is valid for L << a, B >> a ).

The behavior of h is, however, due to the fact that the

heat flow converges at the interface and is concentrated at

the edges of the circle of radius a. This "skin effect" causes
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the dependence on a rather than a2, in complete analogy to

the usual electromagnetic skin effect.

Equations (3-6) are the starting point of our theory.

4. Statistical Treatment of a Contact Element: Elastic

Deformations

Consider the situation shown in Fig. 4, where two Lumps

of heights h and g, respectively, have penetrated a dis-

tance _ given by

h+g = L+ (7)

Eliminating F from equations (3) and (5) we obtain for the

radius of the contact point

and the heat flow through this contact point becomes

The penetration depth $ will, of course, differ for

various contacts, because of the statistical distribution of

their heights. We shall calculate now the average heat fl,_x

through one of the contact elements (keeping the distance L

between the t_o surfaces fixed).

Consider first a sphere of fixed height g above the lower

Y
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surface (see Fig. 4). Then the heat flow through the contact

element will depend on the height of the upper sphere, i.e.

[- [

ho=%'_= %lh+g -L (io)

Since these heights h have a statistical distribution

p(h), the average heat _low (averaged over many contacts with

varying h) will be

1
H

hc (_veraged over h) = _ J(h + g - L) p (h) dh _
L-g

H H %-
r 2

<hc>=_Jdgp(g)Jdh_(h)(h+g-L) (i_)
o L-g

This gives bhc average heat flux < _ > through one

contact element as a function of L.

To obtain the total heat flux through a s _'face of area A

we have to multiply with the number N of contact square, i.e.

with N = A/B 2.

Similarly we csiculate now the average force on the two

interfaces as a function of L. From (3) we have __

_3/2
i CHE-F

The average force due to one contact point becomes °

1967024066-010
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f
L)3/2< F > = V/(h + g - oCh) oCg)d h d g (13)

which together with

< hc> = a/(h + g - L)I/2 _(h) p(g) d h d g (14)

determines the heat flow _s a function of the applied pressure

P=<F>/B 2.

The integrals (13) and (14) can be extended over a region

in the (g,h) plan, such that h + g > L, i.e. we have to average

only ove:_ such contact squares that actually touch one another.

This region of integration is shown in Fig. 6.
h

N
\

\
H ".

'"" "1/\ ' region of\
\

integration
\

\
\
\
k

H L
Fig., 6

5. Statistical Treatment of a Contact Element: Inelastic

Deformations

If a critical pressure Pc (equal to the hardness of the

material) is exceeded the material begins to flow plastically.

While it is hardly possible to treat these phenomena exactly

we shall take them into account in the phenomenological manner

1967024066-011
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described below.

In this treatment we shall assume that in the case of

plastic flow the basic relations (6) and (8) remain valid, while

the relation (5) between the radius of the contact point and

the force has to be changed. The simplest modification of (5)

is

F : % w a2 (15)

i.e. the material flows until the pressure is equal to the

critical pressure all over the contact surface. Inserting (8)

this becomes

R (16)F=p c w-- Z-

This relation replaces (12) in the case of inelastic contacts,

while the expression for the heat flux ht remains unchanged.

Next we have to determine when the critical pressure will

be exceeded at a contact point. The pressure distribution at

the contact is (see e.g. E6_ )

p = 3 F _i - r2/a 2'
(lZ)

2w a2

The pressure is thus largest in the center

= 3 F (18)
Po 2w a2

Plastic flow sets in if Po > Pc" Since both F and a are

functions of _ = h + g - L, this means that there is a critical

1967024066-012
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value of _, _ = _c" above which the contact begins to flow.

Therefore, the situation is as shown in Fig. 7.

\\\\ I inelastic I

i- ,\ E elastic contacts

-, \ N no
'%,, \ %

, I
\

_'\ E \\
\ \

\ \
% N\

N \\ _.\%

% ,,

%

N \

H L L +go

Fig.7

Thus the relation between the force F and the surface distance

L is modified to

<F> = 7/(h + g - L) 3/2 p(h) p(g) dh dg +
E

(191

Pc _ f(+ _ R h + g - L) p(h) o(g) dh dg
I

where the integrals are to be extended over the elastic (E) and

inelastic (I) re_ions, respectively.

The relation between Pc and _c is given by

3 i ,/'_c (2o)Pc=_
_ R
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This follows from (18), (12) and (8).

Equations (14) and (19) are our basic results; they

determine heat flow and force as functions of the distance of

approach.

6. The Interface Co_relation Function

The two-dimensional integrals that appear in (14) and

_]9) can be re-written by a transformation of variables into

a considerably simpler form.

The in;egra!s that appear in (14) and (19) are of the

general type

An(L) "'J(h + g - L)n p(h) p(g) dh dg (21)

integrated over some suitable domain. We introduce new

variables by

h = x + y h + g = 2x
(22)

g=x-y h- g=2y

An (L) then becomes

An (L) = 2Jr (2x - L)n 0(x + y) 0(x - Y) d x dy =
(23)

=p_(2x-L)nK(x)dx

where

K(x) =fdy O(x + y) p(x - y) (24)

i
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Fig. 8

The integral (24) is to be taken along the dotted lines

(Fig. 8) in the (x,y) plane. Therefore the limits of

integration are

X

K(x)= jdy_(x+y)o(x-y) (25)
-X

if the path is analogous to (a) in Fig. 8 or

H-x

KCx ) = 2f dy _(x+y) _(x-y) (26)
O

for paths like (b). In the last step we used the obvious

symmetry of the integrand of (26).

For simplicity we sh_ll restrict ourselves here to case

(b), i.e. we do not consider distance of approach L < H. This

can, however, easily be done if necessary.

1967024066-015
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K(x) will be called the interface correlation function.

It plays the dominant role in the theory of the contact

between two surfaces. To bring our result into its final form

we introduce a new variable

z = 2x- L = h+g- L (27)

in (24). The integrals An there become

A.n (L) Jz n= at--_-)dz (28)
v _z_n_

The limits of integration over z still have to be determined.

L L+I_
Fig. 9

_, \ \z / 7"
E

'AL L +4,.
Fig. lO
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Let us first study the case of elastic contacts only.

Then the limits of the integration are given by z = 0 and

z = 2H - L = d respectively, as can easily be seen from

Fig.9.

In the presence of elastic and inelastic contact points

the situation is as shown in Fig. lO. There the elastic

integrals go from 0 to _, the inelastic ones from _c to d.

Therefore, the expression for heat flux < hc > and force

become finally

d

<_>=_/_z KC,z+2b dz (_9}
O

d

J z3/2 KcZ + L) dz Elastic contacts only2
O

<F> = #c d (30)

oz
o 4

Elastic and inelastic contacts

where

d = 2H - L Pc = W _[ E- (31) _

H - x

K (x)= 2 ayoCx+ y) oCx-y)
O

$

Equations (29-31) are our final results. _

1967024066-017
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7. Examples

We shall calculate how the expectation values for the heat

flux and the force F for some simple distribution functions.

The first step is the calculation of the interface

correlation function.

The following height distribution functions will be con-

sidered

a) P6 (x) = I, (H- x)

i e (H- x)b) Pe (x) =

c) Pm (x) = (H- x)TM vm (32)

(vm is a normalization factor)

The corresponding interface correlation functions are

a) KCx) = 6 (H - x)

b) K(x) - _2(H - x) o ! x ! H , (33)

c) K(x) = winCH - x) 2m+l o _ x _ H ,

(wm = normalization factor)

Inserting these correlation functions into the integrals

(29) and (30) respectively, we obtain the following expressions

for the heat flux and force (we restrict ourselves at the

moment to elastic contacts)

1967024066-018
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a) <hc> r_ d7

3

<F> _-- d2

5
4 dg

b) <hc> : l--g-

7 (34)_v

d_<F> = _ .
DPn

5_+ 2m

c) <hc> --_d2

7+2m
<F> --_d_

Therefore, simple power laws result

i

F3
a) hc "

5

b) he _ F7 (35)

__ F5+4mc) hc

(35a) is just the well known relation between heat flow and

force that results from the assumption that all asperities have

the same height H.

As an example for the transition from elastic to inelastic

deformations we calculate the heat flow in case b, the

1967024066-019
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result is

5
4_ dg

<ho>=_

7

d_ d < _c (3o)

<F> :

5

__cR (d- _ )2__ (Td-5_c)+ 12_ ° (_+ 2_)d>S5H'- c c c

Here the power law changes slowly from

5 5
-r-

h c _ FY to hc "- F° (37)

when inelastic effects set in.

The remarkable common feature of all the examples given

above is that they result in power laws with exponents smaller

than one. In this respect our results are similar to those

of Held _ .

For more complicated height distribution function the heat

flow can be calculated numerically only.

The strong dependence of the functional form of hc(F ) on

the height distribution indicates why attempts to calculate

the heat flow from simple models are generally unsuccessful.

The results obtained hitherto are in agreement with the

experimental data in the low and medium pressure region

(p < lO -3 pc ) where power laws with exponents < 1 are generally

1967024066-020
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observed. At higher pressures, however, a much stronger increase

of the heat flow is sometimes observed, suggesting power laws

h _ F 2. The standard explanation of this is that in this
c

pressure region a strong increase in the number of contact i_

points takes place. A quantitative formulation of this argument
m

can be given in our theory, by assundng a height distribution

of the form

s e (H- x)+ C1- s)6 (G- x)p (h)=
(3t5)

G<H s <i

A typical curve hc(F ) that results from (38) is shown in

Fig. ll (assuming inelastic contacts only).

f

Io 1

G = 0.9775H

...... " _" F

I I0 100
Fig. ll

The onset of the change in slope at FI depends, of course, on

the values of the parameters used in (38), as does F2. With

1967024066-021
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typical parameters s and G one obtains F2/FI_2 - 4, i.e. --

the steep slope can be maintained only over a relatively small

pressure range. Since this is not in agreement with the

experiment, the _lopes > 1 will have to be interpreted in a

different way. This will be done ih Chapter 9.

b. Surface Films and Electrical Conductivity

It has often been suggested that the mechanism for ir _r-

faczal thermal and electrical conductivity are rather simila_.

Recent measurements by Fried _8_! have shown that this is only

partially correct. A typical plot of the ratio electrical/thermal

resistance vs. pressure is shown in Fig. 12.

J

t "o 6

o _ .
" WJedemann-Franz

o . Law
&

_. _O Oo LooOO
Fi6. 12

If the mechanisms for both electrical s_d thermal conduc-

tivity were the same, one would expect the ratio RE/RTh to be

equal to a constant

Re/RTh = 7.35 lO-6 0binWatt (39)oc

(at a temperature T = 27°C).

Actually the ratios are always higher than the one given

by Wiedemann-Franz law (39). This indicates tl_at the resistance

1967024066-022
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stemming from the surface film is the dominant one as far as

electrical conductivity is concerned, while it can probably be

neglected for thermal conductivity. (There is, however, no

clear proof of this).

If both constriction resistance and surface film resistance

are important, the basic equation (6) for the heat flow has

to be changed to

AT
h =

c l + b (40)

2ka _a2ks

1
since the constriction resistance (2--_) and the surface film

resistance (b--b---)have to be added to one another. In (40)
2

ka
s

ks is the thermal conductivity, b the thickness of the surface

film.

Similarly the electrical current through one contact

element becomes

V
J =

1 b (41)
_oa + _a2

G S

where V is the voltage across the interface; e and es are

the electrical conductivities of metal and surface film, respec-

tively. If the effects of the surface film were small the

ratio of electrical/thermal resistance

1967024066-023
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l 6
+ 2

2 _a _a c

s k/c (42)Re/Rth =
i b

+
2

2ka Ta k
S

would be given by the Wiedemann-Franz law. The experimental

evidence is, however, that Re/Rth >> k/c and a
function of

pressure. This indicates that surface films are dominant as

far as the electrical conductivity is concerned, while the

constriction resistance is the important one for heat transfer.

Neglecting the appropriate terms in (40)_ (41), (42) we have

hc : 2ka a T (43)

_a2csV (_)J = b

2 (__) k C_5)Re/Rth = _
S

Since the force F and the electrical current J are both

proportional to a2 (for inelastic contacts), we obtain

J = const. F (_6)

which agrees w_ll with experiment _8D.
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9. The High Pressure Re_ion

In the high pressure region (p _ 10-3 pc ) the approxi-

mation (6) for the constriction resistance is not applicable

anymore and a more accurate expression has to be used. A

particularly simple relation is the one given by Cetinkale

and Fishenden Eg_

hc = zka AT
(47)

tan

For B >> a this agrees with the expression discussed before

(6). If_ however, B = a, i.e. if the contact points become

large then

zka 2 AT

hc : B - a (48)

Equation (45) has to be changed accordingly. It becomes

4

Re/Rth _ k 1

?

The strong dependence of (48) on a is the probable ireason for the striking increase of the heat flow at high

pressures. However, more work has to be done before quantitative

g
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predictionSabout the behavior of the heat flow in the high

pressure region can be made.
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